Ideas for problem assignments

- 1) Compare beam power levels for 7 GeV 100 mA storage ring vs. 7 GeV 100 mA ERL
- 2) Calculate emitted photon power, power densities for 7 GeV 100 mA electron beam
 - Bending magnet source given B and / or rho, in Watts, Watts / milliradian
 - Undulator A, given peak on-axis field and/or k value, No. of periods, in Watts, Watts / mrad^2, Watts / mm^2 @ 50 meters from the source point.
 - Wiggler
- 3) Compute exact expression for Δx ' for thick hard-edge dipole magnet, compare to

$$\Delta x' = \frac{1}{B\rho} \int B(s) ds = \frac{Bs}{B\rho} = \frac{s}{\rho}$$

$$x^{2} + (y-\rho)^{2} = \rho^{2}$$

$$x = \rho \operatorname{Sin}(s/\rho)$$

$$y = \rho (1-\operatorname{Cos}(s/\rho))$$

$$-> dy/dx = -x / (y-\rho) = \operatorname{Tan}(s/\rho)$$
Difference = $\operatorname{Tan}(s/\rho) - s/\rho = (s/\rho)^{3} + \operatorname{O}[(s/\rho)^{5}]$

- 4a) Given a plot of the orbit distortion caused by a single corrector, find 1) the integer part of the tune, and 2) whether the fractional part of the tune is > or < 0.5.
- 4a) Draw electron-beam phase space representation of three-bump, derive amplitude at center corrector as a function of first kick angle, $\Delta\psi_{12}$, $\Delta\psi_{23}$, β_1 , β_2 , β_3 . Derive ratio of kick angles $\Delta x'_1, \Delta x'_2, \Delta x'_3$ as function of the same 5 quantities.
- 4b) Construct two overlapping 3-bumps to produce symmetric and antisymmetric four bump constrain $\beta_1=\beta_4$, $\beta_2=\beta_3$, $\Delta\psi_{12}=\Delta\psi_{34}$. Hint $\Delta x'_1=\Delta x'_4$, $\Delta x'_2=\Delta x'_3$ for symmetric bump, $\Delta x'_1=-\Delta x'_4$, $\Delta x'_2=-\Delta x'_3$ for antisymmetric bump. Solve for Δx at symmetry point for symmetric bump, Δx at symmetry point for antisymmetric bump. Do numerical example, compare original APS injection bump with small phase advance to actual implementation, using 3π -bump get ratio of corrector strengths between the two cases.
- 5) Explain how $x = \text{sqrt}(\text{beta}) \cos(\text{phi})$ is the equation for a straight line, given quadratic dependence of beta on s.
- 6) From Nick:

Determing properties for simple damping of a hom-induced instability in an ERL.